Duration: 120 minutes
Languages: English and Japanese

Associated certifications
CCNP Enterprise
CCIE Enterprise Infrastructure
CCIE Enterprise Wireless
Cisco Certified Specialist – Enterprise Core

Exam overview

This exam tests your knowledge and skills related to implementing core enterprise network technologies, including:

Dual stack (IPv4 and IPv6) architecture
Virtualization
Infrastructure
Network assurance
Security
Automation

Exam Description:
Implementing Cisco Enterprise Network Core Technologies v1.0 (ENCOR 350-401) is a 120-minute exam associated with the CCNP and CCIE Enterprise Certifications. This exam tests a candidate’s knowledge of implementing core enterprise network technologies including dual stack (IPv4 and IPv6) architecture, virtualization, infrastructure, network assurance, security and automation. The course, Implementing Cisco Enterprise Network Core Technologies, helps candidates to prepare for this exam.

The following topics are general guidelines for the content likely to be included on the exam. However, other related topics may also appear on any specific delivery of the exam. To better reflect the contents of the exam and for clarity purposes, the guidelines below may change at any time without notice.

15% 1.0 Architecture
1.1 Explain the different design principles used in an enterprise network
1.1.a Enterprise network design such as Tier 2, Tier 3, and Fabric Capacity planning
1.1.b High availability techniques such as redundancy, FHRP, and SSO
1.2 Analyze design principles of a WLAN deployment
1.2.a Wireless deployment models (centralized, distributed, controller-less, controller based, cloud, remote branch)
1.2.b Location services in a WLAN design
1.3 Differentiate between on-premises and cloud infrastructure deployments
1.4 Explain the working principles of the Cisco SD-WAN solution
1.4.a SD-WAN control and data planes elements
1.4.b Traditional WAN and SD-WAN solutions
1.5 Explain the working principles of the Cisco SD-Access solution
1.5.a SD-Access control and data planes elements
1.5.b Traditional campus interoperating with SD-Access
1.6 Describe concepts of wired and wireless QoS
1.6.a QoS components
1.6.b QoS policy
1.7 Differentiate hardware and software switching mechanisms
1.7.a Process and CEF
1.7.b MAC address table and TCAM
1.7.c FIB vs. RIB

10% 2.0 Virtualization

2.1 Describe device virtualization technologies
2.1.a Hypervisor type 1 and 2
2.1.b Virtual machine
2.1.c Virtual switching
2.2 Configure and verify data path virtualization technologies
2.2.a VRF
2.2.b GRE and IPsec tunneling
2.3 Describe network virtualization concepts
2.3.a LISP
2.3.b VXLAN

30% 3.0 Infrastructure

3.1 Layer 2
3.1.a Troubleshoot static and dynamic 802.1q trunking protocols
3.1.b Troubleshoot static and dynamic EtherChannels
3.1.c Configure and verify common Spanning Tree Protocols (RSTP and MST)
3.2 Layer 3
3.2.a Compare routing concepts of EIGRP and OSPF (advanced distance vector vs. link state, load balancing, path selection, path operations, metrics)
3.2.b Configure and verify simple OSPF environments, including multiple normal areas, summarization, and filtering (neighbor adjacency, point-to-point and broadcast network types, and passive interface)
3.2.c Configure and verify eBGP between directly connected neighbors (best path selection algorithm and neighbor relationships)
3.3 Wireless
3.3.a Describe Layer 1 concepts, such as RF power, RSSI, SNR, interference noise, band and channels, and wireless client devices capabilities
3.3.b Describe AP modes and antenna types
3.3.c Describe access point discovery and join process (discovery algorithms, WLC selection process)
3.3.d Describe the main principles and use cases for Layer 2 and Layer 3 roaming
3.3.e Troubleshoot WLAN configuration and wireless client connectivity issues
3.4 IP Services
3.4.a Describe Network Time Protocol (NTP)
3.4.b Configure and verify NAT/PAT
3.4.c Configure first hop redundancy protocols, such as HSRP and VRRP
3.4.d Describe multicast protocols, such as PIM and IGMP v2/v3
10% 4.0 Network Assurance
4.1 Diagnose network problems using tools such as debugs, conditional debugs, trace route, ping, SNMP, and syslog
4.2 Configure and verify device monitoring using syslog for remote logging
4.3 Configure and verify NetFlow and Flexible NetFlow
4.4 Configure and verify SPAN/RSPAN/ERSPAN
4.5 Configure and verify IPSLA
4.6 Describe Cisco DNA Center workflows to apply network configuration, monitoring, and management
4.7 Configure and verify NETCONF and RESTCONF

20% 5.0 Security
5.1 Configure and verify device access control
5.1.a Lines and password protection
5.1.b Authentication and authorization using AAA
5.2 Configure and verify infrastructure security features
5.2.a ACLs
5.2.b CoPP
5.3 Describe REST API security
5.4 Configure and verify wireless security features
5.4.a EAP
5.4.b WebAuth
5.4.c PSK
5.5 Describe the components of network security design
5.5.a Threat defense
5.5.b Endpoint security
5.5.c Next-generation firewall
5.5.d TrustSec, MACsec
5.5.e Network access control with 802.1X, MAB, and WebAuth

15% 6.0 Automation

6.1 Interpret basic Python components and scripts
6.2 Construct valid JSON encoded file
6.3 Describe the high-level principles and benefits of a data modeling language, such as YANG
6.4 Describe APIs for Cisco DNA Center and vManage
6.5 Interpret REST API response codes and results in payload using Cisco DNA Center and RESTCONF
6.6 Construct EEM applet to automate configuration, troubleshooting, or data collection
6.7 Compare agent vs. agentless orchestration tools, such as Chef, Puppet, Ansible, and SaltStack

QUESTION 1
What is the difference between a RIB and a FIB?

A. The FIB is populated based on RIB content.
B. The RIB maintains a mirror image of the FIB.
C. The RIB is used to make IP source prefix-based switching decisions.
D. The FIB is where all IP routing information is stored.

Answer: A

QUESTION 2
Which QoS component alters a packet to change the way that traffic is treated in the network?

A. policing
B. classification
C. marking
D. shaping

Answer: C

QUESTION 3
Which statement about Cisco Express Forwarding is true?

A. The CPU of a router becomes directly involved with packet-switching decisions.
B. It uses a fast cache that is maintained in a router data plane.
C. It maintains two tables in the data plane: the FIB and adjacency table.
D. It makes forwarding decisions by a process that is scheduled through the IOS scheduler.

Answer: C

QUESTION 4
What is a benefit of deploying an on-premises infrastructure versus a cloud infrastructure deployment?

A. ability to quickly increase compute power without the need to install additional hardware
B. less power and cooling resources needed to run infrastructure on-premises
C. faster deployment times because additional infrastructure does not need to be purchased
D. lower latency between systems that are physically located near each other

Answer: D

Examkingdom 300-410 exam pdf, Certkingdom Cisco CCNP Data Center 300-410 PDF

MCTS Training, MCITP Trainnig

Best Cisco CCNP Enterprise 300-410 Certification, Cisco CCNP Enterprise 300-410 Training at certkingdom.com

Click to rate this post!
[Total: 0 Average: 0]
News Reporter